GOC

B-rep for Triangle Meshes

Gino van den Bergen Dtecta

To the memory of

Jan Paul van Waveren (1977-2017)

B-reps in Games

- Mesh cutting, e.g. Woodcutting in Farming Simulator 15 and Farming Simulator 17.

B-reps in Games

- Incremental hull computation in Quickhull and Expanding Polytope Algorithm (EPA).

B-reps in Games

- Pathfinding on a navigation mesh.

Triangle Mesh

- Commonly stored as two arrays:
- Array of vertices (xyz, uv, normals, etc.)
- Array of triplets of indices into the vertex array.
- Finding neighboring vertices / adjacent faces involves $O(n)$ search.

Boundary Representation

- A boundary representation (B-rep) offers $\mathrm{O}(1)$ retrieval of neighboring features.
- Examples of B-reps for polygon meshes are winged-edge and half-edge structure.
- Winged-edge-type structures are not the best choice for triangle meshes.

B-rep for Triangle Meshes

- A triangle given by index triplet (i, j, k) has its edges identified by:
- $1^{\text {st }}$ edge: (k, i)
- $2^{\text {nd }}$ edge: (i, j)
- $3^{\text {rd }}$ edge: (j, k)

B-rep for Triangle Meshes (cont.)

- A B-rep triangle stores combined indices to its three adjacent half-edges.
- A (half-)edge is identified by a zero-based face index f and a one-based edge index e (1, 2, or $3)$.
- The combined half-edge index h is:

$$
f * 4+e
$$

B-rep for Triangle Meshes (cont.)

- Example: Suppose face index is 5 , then half-edge indices are resp. 21, 22, and 23

B-rep for Triangle Meshes (cont.)

- Why don't we use a zero-based edge index and store h as $f * 3+e$?
- Decomposition of h into f and e requires an integer division. Integer division by a power of two is cheaper using right shift.
- Rationale for one-based edge index follows...

B-rep for Triangle Meshes (cont.)

struct HalfEdge
\{
Index end; // end vertex index
Index opp; // opposite half-edge
\};

B-rep for Triangle Meshes (cont.)

- nextHalfEdge: returns next (CCW) half-edge.
- prevHalfEdge: returns previous (CW) half-edge.

B-rep for Triangle Meshes (cont.)

Index nextHalfEdge (Index h)
i

$$
\begin{aligned}
& ++h ; \\
& \text { return }(h \& 3) \quad!=0 \quad ? \quad \text { : } \quad \mathrm{h}-3 ;
\end{aligned}
$$

$$
\text { \} }
$$

B-rep for Triangle Meshes (cont.)

Index prevHalfEdge (Index h)
\{

$$
--h ;
$$

return $(\mathrm{h} \& 3)!=0$? $\mathrm{h}: \mathrm{h}+3$; \}

B-rep for Triangle Meshes (cont.)

- Note that no modulo (\%) is used. Modulo of 3 involves an integer division.
- No branch either. Conditional expression (?:) will use conditional move (CMOV).
- One-based edge index requires comparison with zero. (h \& 3) ! = 0 is slightly cheaper than (h \& 3) ! = 3 .

B-rep for Triangle Meshes (cont.)

struct Face
f
Index flags; // flag bits
Index matId; // material ID
HalfEdge edges[3]; // half-edges
\};

B-rep for Triangle Meshes (cont.)

- We make sure that sizeof(Face) == sizeof(HalfEdge) * 4,
- And store all faces in a single array (std::vector) attribute faces.
- Then, opp can be used as an index into reinterpret_cast<HalfEdge*>(\&faces[0])

Incoming Half-Edges

Incoming Half-Edges (cont.)

Index h = first;
do
\{
h = edgeAt(nextHalfEdge (h)) .opp;
\}
while (h != first);

Convex Silhouette

Convex Silhouette

```
void silhouetteMain(Index f, Vector3 p)
{
    faces[f].flags |= VISIBLE;
    for (Index e = 1; e != 4; ++e)
    {
    silhouette(edgeAt(f * 4 + e).opp, p);
}
}
```


Convex Silhouette

```
void silhouette(Index h, Vector3 p)
{
    if ((faces[h / 4].flags & VISIBLE) == 0 &&
    faces[h / 4].isVisibleFrom(p))
    {
    faces[h / 4].flags |= VISIBLE;
    silhouette(edgeAt(nextHalfEdge(h)).opp, p);
    silhouette(edgeAt(prevHalfEdge(h)).opp, p);
```


Quickhull

- Computes a B-rep for the convex hull of a point cloud.
- Pick three non-collinear points and form a B-rep by welding the triangle's front and back.
- Enclose remaining points by forming a polyhedral cone (teepee) to the current B-rep's silhouette for each point.

Quickhull (cont.)

- Distribute set of points over faces based on containment in each face's outside-half-space.
- For each face having outside-points, pick the point furthest from its face's plane.
- Compute silhouette from this point and form a polyhedral cone.
- Repeat until all points are contained.

Quickerhull

- Maintain a priority queue of faces that have outside-points using the distance to the furthest point as priority.
- The face with furthest point goes first.
- Prioritizing results in fewer expansions and speeds up computations roughly by a factor of three.

Quickhull versus Quickerhull

- Demo

References

- Baumgart. A polyhedron representation for computer vision. Proc. AFIPS (1975)
- Rossignac, Safonova, Szymczak. 3D Compression Made Simple: Edgebreaker on a Corner-Table. Proc. SMI (2001)
- Barber, Dobkin, Huhdanpaa. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software. 22 (4): 469-483. (1996)
- Van den Bergen. Collision Detection in Interactive 3D Environments. Morgan Kaufmann Publishers (2003)

Thanks!

Check me out on

- Web: www.dtecta.com
- Twitter: @dtecta
- GitHub: https://github.com/dtecta

