
B-rep for Triangle
Meshes

Gino van den Bergen
Dtecta

To the memory of

Jan Paul van Waveren (1977-2017)

B-reps in Games

● Mesh cutting, e.g. Woodcutting in Farming
Simulator 15 and Farming Simulator 17.

B-reps in Games

● Incremental hull computation in Quickhull and
Expanding Polytope Algorithm (EPA).

B-reps in Games

● Pathfinding on a navigation mesh.

Triangle Mesh

● Commonly stored as two arrays:

● Array of vertices (xyz, uv, normals, etc.)

● Array of triplets of indices into the vertex
array.

● Finding neighboring vertices / adjacent
faces involves O(n) search.

Boundary Representation

● A boundary representation (B-rep) offers
O(1) retrieval of neighboring features.

● Examples of B-reps for polygon meshes
are winged-edge and half-edge structure.

● Winged-edge-type structures are not the
best choice for triangle meshes.

B-rep for Triangle Meshes

● A triangle given by
index triplet (𝑖, 𝑗, 𝑘) has
its edges identified by:

● 1st edge: (𝑘, 𝑖)

● 2nd edge: (𝑖, 𝑗)

● 3rd edge: 𝑗, 𝑘
k i

j

1st

2nd 3rd

B-rep for Triangle Meshes (cont.)

● A B-rep triangle stores combined indices to its
three adjacent half-edges.

● A (half-)edge is identified by a zero-based face
index f and a one-based edge index e (1, 2, or
3).

● The combined half-edge index h is:

f * 4 + e.

B-rep for Triangle Meshes (cont.)

● Example: Suppose face
index is 5, then half-edge
indices are resp. 21, 22,
and 23

k i

22 23

j

21

B-rep for Triangle Meshes (cont.)

● Why don’t we use a zero-based edge index and
store h as f * 3 + e?

● Decomposition of h into f and e requires an
integer division. Integer division by a power of
two is cheaper using right shift.

● Rationale for one-based edge index follows…

B-rep for Triangle Meshes (cont.)

struct HalfEdge

{

 Index end; // end vertex index

 Index opp; // opposite half-edge

};

B-rep for Triangle Meshes (cont.)

● nextHalfEdge: returns

next (CCW) half-edge.

● prevHalfEdge: returns

previous (CW) half-edge.

 k i

22 23

j

21

nextHalfEdge prevHalfEdge

B-rep for Triangle Meshes (cont.)

Index nextHalfEdge(Index h)

{

 ++h;

 return (h & 3) != 0 ? h : h - 3;

}

B-rep for Triangle Meshes (cont.)

Index prevHalfEdge(Index h)

{

 --h;

 return (h & 3) != 0 ? h : h + 3;

}

B-rep for Triangle Meshes (cont.)

● Note that no modulo (%) is used. Modulo of 3
involves an integer division.

● No branch either. Conditional expression (?:)
will use conditional move (CMOV).

● One-based edge index requires comparison with
zero. (h & 3) != 0 is slightly cheaper than
(h & 3) != 3.

B-rep for Triangle Meshes (cont.)

struct Face

{

 Index flags; // flag bits

 Index matId; // material ID

 HalfEdge edges[3]; // half-edges

};

B-rep for Triangle Meshes (cont.)

● We make sure that sizeof(Face) ==
sizeof(HalfEdge) * 4,

● And store all faces in a single array
(std::vector) attribute faces.

● Then, opp can be used as an index into

 reinterpret_cast<HalfEdge*>(&faces[0])

Incoming Half-Edges

opp

opp

opp

opp opp

opp

Incoming Half-Edges (cont.)

Index h = first;

do

{

 …

 h = edgeAt(nextHalfEdge(h)).opp;

}

while (h != first);

Convex Silhouette

Convex Silhouette

void silhouetteMain(Index f, Vector3 p)

{

 faces[f].flags |= VISIBLE;

 for (Index e = 1; e != 4; ++e)

 {

 silhouette(edgeAt(f * 4 + e).opp, p);

 }

}

Convex Silhouette

void silhouette(Index h, Vector3 p)

{

 if ((faces[h / 4].flags & VISIBLE) == 0 &&

 faces[h / 4].isVisibleFrom(p))

 {

 faces[h / 4].flags |= VISIBLE;

 silhouette(edgeAt(nextHalfEdge(h)).opp, p);

 silhouette(edgeAt(prevHalfEdge(h)).opp, p);

 }

}

Quickhull

● Computes a B-rep for the convex hull of a point
cloud.

● Pick three non-collinear points and form a B-rep
by welding the triangle’s front and back.

● Enclose remaining points by forming a
polyhedral cone (teepee) to the current B-rep’s
silhouette for each point.

Quickhull (cont.)

● Distribute set of points over faces based on
containment in each face’s outside-half-space.

● For each face having outside-points, pick the
point furthest from its face’s plane.

● Compute silhouette from this point and form a
polyhedral cone.

● Repeat until all points are contained.

Quickerhull

● Maintain a priority queue of faces that have
outside-points using the distance to the furthest
point as priority.

● The face with furthest point goes first.

● Prioritizing results in fewer expansions and
speeds up computations roughly by a factor of
three.

Quickhull versus Quickerhull

● Demo

References

● Baumgart. A polyhedron representation for computer
vision. Proc. AFIPS (1975)

● Rossignac, Safonova, Szymczak. 3D Compression Made
Simple: Edgebreaker on a Corner-Table. Proc. SMI (2001)

● Barber, Dobkin, Huhdanpaa. The quickhull algorithm for
convex hulls. ACM Transactions on Mathematical Software.
22 (4): 469–483. (1996)

● Van den Bergen. Collision Detection in Interactive 3D
Environments. Morgan Kaufmann Publishers (2003)

https://people.cs.clemson.edu/~dhouse/courses/405/papers/p589-baumgart.pdf
https://people.cs.clemson.edu/~dhouse/courses/405/papers/p589-baumgart.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cc.gatech.edu/~jarek/papers/CornerTableSMI.pdf
http://www.cs.princeton.edu/~dpd/Papers/BarberDobkinHuhdanpaa.pdf
http://www.cs.princeton.edu/~dpd/Papers/BarberDobkinHuhdanpaa.pdf
http://www.cs.princeton.edu/~dpd/Papers/BarberDobkinHuhdanpaa.pdf
http://www.cs.princeton.edu/~dpd/Papers/BarberDobkinHuhdanpaa.pdf
http://www.cs.princeton.edu/~dpd/Papers/BarberDobkinHuhdanpaa.pdf
http://www.cs.princeton.edu/~dpd/Papers/BarberDobkinHuhdanpaa.pdf
http://dtecta.com/publications
http://dtecta.com/publications

Thanks!

Check me out on

● Web: www.dtecta.com

● Twitter: @dtecta

● GitHub: https://github.com/dtecta

http://www.dtecta.com/
https://twitter.com/dtecta
https://twitter.com/dtecta
https://twitter.com/dtecta
https://github.com/dtecta

